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Abstract. This paper presents measurements of the angular variation of the position and width
of ESR lines in three mutually perpendicular planes of a single crystal of CuGeO3 in the
temperature range 12–200 K at two widely differing microwave frequencies. The analysis
is carried out in terms of the anisotropic exchange and anisotropic Zeeman interaction. The
variations of the anisotropy of the linewidth can be attributed to a temperature dependence of
the orientation and the principal values of the exchange tensor.

1. Introduction

CuGeO3 is a quasi-one-dimensional spin-S = 1/2 Heisenberg antiferromagnet (|Jc/kB | ≈
90 K [1], Jb ≈ Jc/10 [2]), which shows at low temperatures (TSP = 14 K) a spin–Peierls
phase transition [3]. Induced by spin–phonon coupling, dimerization of the uniform spin
chains takes place belowTSP , so the non-magneticS = 0 ground state becomes separated by
an energy gap from an excitedS = 1 triplet state. In the low-temperature range, a magnetic
phase transition takes place at aboutBc ≈ 12 T from the non-magnetic to a magnetic spin–
Peierls phase. So far the spin–Peierls transition has only been found in organic systems
[4], and since CuGeO3 is the first inorganic compound found to undergo such a transition,
it has been studied carefully by many experimental techniques (neutron scattering [2, 5],
Raman scattering [6, 7], specific heat [8], magnetization [1, 9]). The subject of this paper
is an ESR study of CuGeO3.

ESR measurements allow a sensitive investigation of both the static and the dynamic
properties of the Cu2+ spins. Oseroffet al [10] determined for the first time the energy
gap in the dimerized spin–Peierls phase by ESR, and observed a large increase of the
linewidth with increasing temperature. This was attributed to a diffusive behaviour of the
spin-correlation functions, and interpreted as an indication of the excellent one-dimensional
properties of CuGeO3. These results were confirmed by Hondaet al [13], who revealed, by a
study of the anisotropy of the linewidth, that the line broadening is caused by the symmetric
part of the anisotropic exchange interaction. Recently, these results were contradicted by
Yamadaet al [12]. They studied the ESR line up toT = 800 K and found that there are no
indications for spin diffusion, and that both the temperature dependence and the anisotropy
of the linewidth are probably caused by the antisymmetric Dzyaloshinski–Moriya exchange
interaction. All of these studies were carried out at relatively low frequencies (ν . 35 GHz).
ESR measurements at larger frequencies were used to probe directly the energy gap of the
spin–Peierls phase [11], and the spin dynamics of the non-magnetic and magnetic spin–
Peierls phase [14, 15].
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Since it is important for the interpretation of ESR results to know which types of
anisotropic interaction contribute to the broadening of the linewidth, measurements of the
anisotropy of the ESR linewidth were carried out at low (9.5 GHz) and high frequency
(245 GHz) at temperatures ranging betweenT = 12 K and 200 K. The experimental results
allow an accurate characterization of the anisotropic interactions.

Figure 1. A view of the crystallographic unit cell of CuGeO3 along thec-axis. The orientation
of the g-tensor (central Cu2+ ion) and the principal axes of the exchange tensorA

(n)
µµ (upper

Cu2+ ion) are indicated by ellipsoids.

2. Experimental details and results

ESR measurements of various samples (≈2× 3× 0.5 mm3) were carried out at 9.5 GHz
with a Bruker ESP300E spectrometer and at 245 GHz with the high-magnetic-field ESR
equipment of the Grenoble High Magnetic Field Laboratory [16] in the temperature range
12–200 K. A transmission configuration (Faraday configuration) was used at 245 GHz, and
three samples (≈5× 3× 0.5 mm3) were cut from one larger crystal, in such a way that
measurements of the angular dependence of the ESR signal could be carried out in the
three principal planes (ab, bc, and ca) of the orthorhombic crystal structure of CuGeO3.
A view of the crystallographic unit cell along thec-direction is given in figure 1. With
regard to the interpretation of the ESR results, it is important to note that there are two
magnetically inequivalent Cu2+ sites. There are two kinds of strongly exchange-coupled
copper chains running along thec-direction [17]. The ESR line shapes observed at 9.5 GHz
are Lorentzian. At 245 GHz the resonance lines are distorted in many cases by reflections
of the microwaves in the transmission line as well as by a mixing of the absorption and
dispersion signal. These effects are hard to control, and change from one experiment to
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Figure 2. The angular variation of theg-factor in the crystallographicab-, bc-, andca-planes of
CuGeO3 at 20 K. The solid line shows the fit with the principalg-values given in the text. The
broken lines indicate the variation of theg-factor of the two magnetically inequivalent chains.

Figure 3. The anisotropy of the ESR linewidth at 9.5 GHz. Dots: experimental results; solid
lines: the calculated anisotropy of the ESR linewidth (for details, see the text).

another in an unpredictable manner. Therefore the width of the resonance is sometimes not
well defined. The errors due to theses effects are about 10% of1B1/2.

The experimental results are shown in figures 2, 3, and 4. Figure 2 shows the angular
variation of theg-factor at 20 K. In agreement with earlier measurements, theg-factor is
nearly temperature independent. Figures 3 and 4 show the anisotropy of the linewidth for
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Figure 4. The anisotropy of the ESR linewidth at 245 GHz. Dots: experimental results; solid
lines: the calculated anisotropy of the ESR linewidth (for details, see the text).

9.5 GHz and 245 GHz, respectively. At 9.5 GHz the size of the linewidth decreases from
large values at high temperatures (1B1/2 > 100 mT) down to1B1/2 ≈ 6 mT at 30 K,
without any significant change of the anisotropy of1B1/2. However, belowT ≈ 30 K
very characteristic changes of the anisotropy of1B1/2 are observed. The minimum of the
linewidth shifts from the crystallographicc-direction to thea-direction, and an additional
peak develops just above the spin–Peierls phase transition in thebc-plane. A large maximum
of the linewidth is found in theab-plane for measurements at 245 GHz. As for the
measurements at 9.5 GHz, a small peak develops at low temperatures in thebc-plane.

3. Discussion of the experimental results

The linewidth of the Lorentzian-shaped ESR absorptions is given by the integral

1B1/2 = h̄

gµB
Re
∫ ∞

0
dτ 9(τ). (1)

of the relaxation function

9(τ) = 1

h̄2

〈[ĤA(τ ), Ŝ+][ Ŝ−, ĤA]〉
〈Ŝ+Ŝ−〉 (2)

where theŜ± denote transverse components of the total spin and of the exchange-coupled
spins,〈 〉 denotes the thermal average, andĤA denotes the Hamiltonian of the anisotropic
spin–spin coupling [18–20]. In order to estimate the contributions of the various anisotropic
interactions, the integral can be approximated by

1B1/2 ≈ h̄

gµB
9(0)τc (3)

with the second momentM(A)

2 = 9(0), and the correlation timeτc ≈ (|J |/h̄)−1. When the
second moments are simply estimated as the squares of the parameters of the corresponding
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spin-Hamiltonian parameters, the ESR linewidth due to the hyperfine interaction of the
electron with the nuclear spin of the copper ions is in the range1B1/2 ≈ (A||)2/γeh̄|Jc| ≈
5µT, withA|| = gCuβCu×43.6 T andγe = gµB/h̄ = 1.76×1011 rad s−1 T−1. The linewidth
due to the magnetic dipole–dipole interaction is1B1/2 ≈ (ωd)

2/γe(|Jc|/h̄) ≈ 0.1 mT,
with ωd = (µ0/4π)h̄γ 2

e /c
3 and c = 2.941 Å. The comparison with the experimental

results shows that these two contributions are of minor importance. The most important
contributions to the ESR linewidth can be expected for the anisotropic exchange interaction
ĤAE :

1B1/2 ≈ 1

γe

(Az)
2

|Jc|h̄ ≈ 23 mT

with Az ≈ (1g/g)2|Jc| [22] and1g/g ≈ 0.174, and for the anisotropic Zeeman interaction
ĤAZ:

1B1/2 ≈ 1

γe

(gµBB0)
2

|Jc|h̄
(
1g

g

)2

≈ 35 mT

in strong magnetic fields(B0 ≈ 8.7 T).

Figure 5. Crystallographica-, b-, c- and laboratoryex -, ey -, ez-coordinates used for the
mathematical description of the ESR. TheB0-field is applied parallel to thez-direction.

In the following, the analysis of the anisotropy of the linewidth will be discussed in
terms of the anisotropic exchange and Zeeman interaction.

3.1. The anisotropic exchange interaction

The analysis of the ESR measurements at 9.5 GHz is carried out in terms of the symmetric
part of the anisotropic exchange interaction̂HAE . Like the magnetic dipole–dipole
interaction, the Hamiltonian of the anisotropic exchange interaction is given by the sum

ĤAE =
2∑

M=−2

ĜM (4)

with

Ĝ0 =
∑
i 6=j

1

4
A0(ij)(3ŝ

z
i ŝ
z
j − ŝi · ŝj )

Ĝ±1 =
∑
i 6=j
−3

4
A±1(ij)(ŝ

±
i ŝ

z
j + ŝ±j ŝzi )
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and

Ĝ±2 =
∑
i 6=j
−3

8
A±2(ij)ŝ

±
i ŝ
±
j .

The At (t = 0,±1,±2) denote the geometrical parameters of the anisotropic exchange,
and ŝi the individual spins. The coordinatesx, y, z refer to a coordinate system in which
the z-direction is defined by the direction of the applied magnetic fieldB0 (compare figure
5). When only nearest-neighbour interactions are considered, equations (1) and (4) lead to
(mathematical details are given in the appendix)

1B1/2 = 1

γe

9

4h̄2 Re(|A0|2f0+ |A1|2f1+ |A2|2f2). (5)

f0, f1, andf2 denote spectral densities, which at least at high temperature are in the ratio
1:10:1. In order to fit the experimental data, the spectral densities are used as parameters.

Figure 6. Curves 1, 2 and 3 show the angular variation of the geometrical factors|A0/Az|2,
|A2/Az|2 and 10|A1/Az|2 of the symmetric part of the anisotropic exchange. Curve 4 shows
(|A0|2 + 10|A1|2 + |A2|2)/(Az)2. The curves are calculated forα = −1/2, and6 (az,a) = 56◦.

Table 1. Parameters for fitting the anisotropy of the linewidth at 9.5 GHz.α denotes the
orthorhombic distortion of the exchange tensor,6 (az,a) the angle between theaz-axis and
the crystallographica-direction (see figure 1).1B0 = (1/γe)(3Az/2h̄)2f0 is used as a scaling
parameter,f0:f1:f2 is the ratio of the spin-correlation functions of table 3 (see later).

T /K |α| 6 (az,a) 1B0/mT f0:f1:f2

200 0.55± 0.01 (50± 1)◦ 124± 2 1:10:1
100 0.57± 0.01 (48± 1)◦ 60± 1 1:10:1

30 0.61± 0.02 (48± 1)◦ 7.9± 0.1 1:10:1
17 0.77± 0.03 (60± 1)◦ 4.0± 0.2 1:(11± 0.3):1
12 0.83± 0.02 (71± 3)◦ 10.8± 0.2 1:10:1
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The geometrical factors|At |2 can be calculated from the principal values of the exchange
tensorAx = αAz andAy = −(1+ α)Az, and the orientation of its principal axis within the
unit cell. Due to the crystallographic symmetry, one of the principal axes should be parallel
to thec-direction. In order to fit the experimental data, the orthorhombic distortionα and
the angle of thez-axis to thea-direction of the exchange tensor (compare figure 1) are used
as fitting parameters. The solid lines of figure 3 are calculated with the parameters given
in table 1.

Figure 6 shows the angular variation of the|At |2, when the magnetic field is applied
in the crystallographicab-, bc-, andca-planes. The three contributions,|A0|2, |A1|2, and
|A2|2, can be clearly distinguished by their angular variations, so deviations off0:f1:f2

from the ratio 1:10:1 should lead to characteristic changes in the anisotropy of the ESR
linewidth. Nearly all of the measurements carried out at 9.5 GHz give no indication that
this ratio should be changed. Only the measurements just above the spin–Peierls phase
transition demand a slight increase off1 due to the additional peak observed in thebc-
plane. Although nearly no temperature dependence in the ratio of the spectral densities could
be detected, the anisotropy of1B1/2 reveals a temperature dependence of the orientation
and the size of the orthorhombic distortion of the exchange tensor (compare table 1). In
agreement with previous findings [21], this anisotropy is very small at high temperatures, but
it becomes considerable just above and below the spin–Peierls transition. The temperature
dependence of the exchange tensor may be caused by the temperature dependence of the
lattice parameters.

3.2. The anisotropic Zeeman interaction

The anisotropic Zeeman interaction becomes important for the analysis of ESR
measurements on CuGeO3 in high magnetic fields, due to the anisotropicg-tensor of the
Cu2+ ions. Figure 1 shows the difference in the orientation of theg-tensors of neighbouring
Cu2+ ions along theb-direction. Therefore two resonance signals at quite different magnetic
fields B0 should be observed when the field is applied in theab-plane. However, due to
the strong exchange couplingJb along theb-direction only one resonance can be observed.
Therefore it can be expected that the linewidth should increase with increasing magnetic
field strength, due to the increasing ratio between the differenceB

(1)
0 −B(2)0 of the resonance

fields of the two kinds of spin and|Jb|. This is the reason for the additional peak in the
anisotropy of the linewidth in theab-plane observed for the measurement at 245 GHz
(compare figure 4).

The additional contribution of this Zeeman broadening of the linewidth can be calculated
in the framework of the theory of exchange narrowing and averaging. The calculation carried
out in the appendix (equations (A9)–(A19)) gives the following expression (compare also
[23]):

1B1/2 = 1

γe

(µBB0)
2

h̄|Jb|
√
π

8
Re

(
|1gzz|2+ |1gzx + i1gzy|2 1

2
exp

[
−1

8
(h̄ω0/Jb)

2

])
. (6)

It turns out that the linewidth is proportional to the square of the resonance fieldB0, and
the squares of the difference between theg-tensors of the two kinds of spin,1gzµ =
1
2(g

(1)
zµ − g(2)zµ ), µ = x, y, z.
The localg-tensors of the Cu2+ ions are well defined by the anisotropy of theg-factor

shown in figure 2. The crystallographic symmetry of the nearest neighbourhood of the Cu2+

ions is nearly tetragonal, so the ground state of the Cu2+ ions is a dx2−y2 orbital, which
is characterized by an axialg-tensor, with a large value ofg|| perpendicular to the plane
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of the neighbouring oxygen atoms and a smaller value ofg⊥ in the plane (figure 1). The
orientation and the principal values of theg-tensors can be determined from the angular
variation of the resonance field strengthB0 via

ω0 = ḡµBB0
/
h̄ (7)

with ḡ =
√
ḡ2
zx + ḡ2

zy + ḡ2
zz. The comparison between the experimental results at 20 K

and equation (7) is shown in figure 2. The solid line is calculated with the principalg-
factorsg|| = 2.348± 0.005 andg⊥ = 2.063± 0.005. The principal axis of theg-tensor
is perpendicular to thec-direction. The angles with respect to thea-direction are 56◦ and
124◦ for the two Cu2+ sites, respectively.

Figure 7. Curve 1: the angular variation of|1gzz/ḡ|2; curve 2: the angular variation of
|1(gzx + i1gzy)/ḡ|2.

The important result of equation (6) is that, within the approximations made in the
appendix, the contribution of the anisotropic Zeeman interaction to the ESR linewidth is
only determined by the inter-chain exchangeJb. ThereforeJb is used as a parameter to fit
the experimental result.

Table 2. Parameters for fitting the anisotropy of the linewidth at 245 GHz. The notation is as
in table 1.

T /K |α| 6 (az,a) 1B0/mT f0:f1:f2 h̄ω0/|Jb|
100 0.57± 0.01 (48± 1) 64± 4 1:10:1 2.8± 0.3
30 0.77± 0.6 (70± 7) 13± 2 1:(13± 2):1 1.65± 0.1
20 0.77± 0.6 (70± 7) 10.5± 1 1:(15± 2):1 1.1± 0.1
12 0.77± 0.6 (70± 7) 10.5± 1 1:(17± 2):1 0.5± 0.1

Figure 7 shows the angular variation of|1gzz/ḡ|2 and |(1gzx + i1gzy)/ḡ|2, which
determines the anisotropy of the Zeeman contribution to the ESR linewidth. The anisotropy
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of the linewidth at 245 GHz is calculated including the combined contributions of the
anisotropic exchange and Zeeman interactions. The parameters used to calculate the solid
lines in figure 4 are given in table 2. With the ratio ¯hω0/|Jb| = 2.8 used to adjust the Zeeman
contribution atT = 100 K, the inter-chain exchange constant becomes|Jb/kB | ≈ 4.2 K,
which is in reasonable agreement with|Jb| ≈ |Jc/10| observed in neutron scattering
experiments [2]. At lower temperatures the decreasing ratio ¯hω0/|Jb| shows the breakdown
of the Gaussian approximation for the spectral density. In contrast to the measurements at
9.5 GHz, the ratiof0:f1:f2 for the anisotropic exchange changes continuously from 1:10:1
at high temperatures to 1:17:1 atT = 12 K, which indicates the influence of the magnetic
field on the spectral densities of the spin-correlation functions.

4. Conclusion

The anisotropy of the ESR linewidth is measured at 9.5 and 245 GHz between 12 K and
200 K, and it is shown that a description of the observed anisotropy of the ESR linewidth
is possible in terms of the anisotropic exchange and Zeeman interaction.

The angular variation of1B1/2 reveals an orthorhombic distortion of the exchange
tensor, which shows a characteristic temperature dependence. In agreement with previous
findings for the exchange tensor [22], this anisotropy is very small at high temperatures,
but it becomes considerable just above and below the spin–Peierls transition. The principal
axes of the exchange tensor are only roughly determined by the orientation of theg-tensor.
As for the anisotropy of the exchange tensor, the orientation of the principal axes depends
on temperature, especially in the range of the spin–Peierls transition. The temperature
dependence of the exchange tensor may be caused by the temperature dependence of the
lattice parameters.

The anisotropic Zeeman interaction becomes important for the analysis of ESR
measurements on CuGeO3 in high magnetic fields, due to the fact that there are two
magnetically different types of spin chain. The broadening of the ESR line by the Zeeman
interaction is narrowed only by the weak inter-chain exchangeJb and not by the strong
intra-chain exchangeJc, like for the anisotropic exchange. Therefore the broadening of the
ESR line by the anisotropic Zeeman interaction is at least a factor of 10 more effective than
the broadening by the anisotropic exchange.

An important consequence for ESR studies of CuGeO3 in high magnetic fields is that
the linewidth contains information on the four spin-correlation functions related to the
anisotropic exchange and the two spin-correlation functions of the anisotropic Zeeman
interaction. By altering the direction of the applied magnetic field, it is possible to study
either the transverse(B0||a or b), or the longitudinal components of the two spin-correlation
functions (B0⊥c and 6 (B0,a) = 45◦). For B0||c the Zeeman broadening is completely
suppressed.
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Appendix

Kubo showed that the width of exchange-narrowed Lorentzian resonance lines is given by
the integral [18, 19]

1B1/2 = 1

γe
Re
∫ ∞

0
dτ 9(τ) (A1)

of the relaxation function

9(τ) = 1

h̄2

〈[ĤA(τ ), Ŝ+][ Ŝ−, ĤA]〉
〈Ŝ+Ŝ−〉 . (A2)

where〈 〉 denotes the thermal average, theŜ± are the transverse components of the total
spin, andĤA is the anisotropic spin–spin interaction, which broadens the resonance. The
time development ofĤA is calculated in the interaction representation according to

ĤA(t) = e−iĤ0t/h̄ĤAeiĤ0t/h̄ (A3)

where Ĥ0 is the sum of the isotropic Zeeman (ĤZ) and the exchange (̂Hex) interactions.
SinceĤZ commutes withĤex , the HamiltonianĤA(t) can be rewritten as

ĤA(t) =
∑
M

eiMω0t ĜM(t) with ĜM(t) = e−iĤex t/h̄ĜMeiĤex t/h̄. (A4)

With the abbreviationĝM = [ĜM, Ŝ
+], and sinceĤex commutes with the components of

the total spin, [̂GM(t), Ŝ
+] becomesĝM(t) = e−iĤex t/h̄[ĜM, S

+]eiĤex t/h̄, so the relaxation
function simplifies to

9(t) = 1

h̄2

∑
M

(〈ĝM(t)ĝ∗M〉eiMω0t )
/
〈Ŝ+Ŝ−〉. (A5)

In the following, the ESR linewidths according to equations (A1) and (A5) are calculated
for the anisotropic exchange and the anisotropic Zeeman interactions.

Table A1. The operatorŝgM of the symmetric anisotropic exchangêHAE and the anisotropic
Zeeman HamiltonianĤAZ (for details, see the text).

M ĝM of ĤAE ĝM of ĤAZ

0
∑
i 6=j

3

2
A0(ij)ŝ

z
i ŝ
+
j µBB0

∑
i∈1

∑
j∈2

gzz(ŝ
+
i − ŝ+j )

+1
∑
i 6=j
−3

2
A1(ij)ŝ

+
i ŝ
+
j 0

−1
∑
i 6=j
−3

2
A−1(ij)(ŝ

−
i ŝ
+
j − 2ŝzi ŝ

z
j ) µBB0

∑
i∈1

∑
j∈2

(gzx + igzy)(ŝ
z
i − ŝzj )

+2 0

−2
∑
i 6=j

3

2
A2(ij)ŝ

−
i ŝ

z
j
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A1. The anisotropic exchange interaction

When only nearest-neighbour interactions are considered, the anisotropic exchange
Hamiltonian is given by

ĤAE = 1

2

∑
i,j=i±1

∑
µ,µ=x,y,z

Aµµŝ
µ

i ŝ
µ

j

=
∑

i,j=i±1

1

4
A0(3ŝ

z
i ŝ
z
j − ŝi · ŝj )−

∑
i,j=i±1

3

4
A+(ŝ+i ŝ

z
j + ŝ+j ŝzi )+ CC

−
∑

i,j=i±1

3

8
A+2ŝ

+
i ŝ
+
j + CC

=
+2∑

M=−2

ĜM

(A6)

with

A0 = Azz A±1 = −1

3
(Axz ∓ iAyz) A±2 = −1

3
(Axx − Ayy ∓ 2iAxy). (A7)

The operatorŝgM corresponding toĤAE are given in table A1, and the linewidth becomes

1B1/2 = 1

γe

9

4h̄2 Re(|A0|2f0+ |A1|2f1+ |A2|2f2) (A8)

with the spectral densitiesft of table A2. Equation (A8) is used for the analysis of the
experiment.

Table A2. The combination of the spin-correlation functionsf αβijkl (ω) =
∫∞

0 dt eiωtf
αβ
ijkl (t)

with f
αβ
ijkl (t) = 〈ŝαi (t)ŝβj (t)(ŝαk ŝβl )+〉 for ĤAE and f αnm(ω) =

∫∞
0 dt eiωtf αnm(t) with f αnm(t) =

〈∑i∈n ŝ
α
i (t)(

∑
j∈m ŝ

α
j )
+〉 for ĤAZ .

ĤAE

f0 = 1

〈Ŝ+Ŝ−〉
∑

i,j=i±1

∑
k,l=k±1

f z+ijkl (0)

f1 = 1

〈Ŝ+Ŝ−〉
∑

i,j=i±1

∑
k,l=k±1

f++ijkl (−ω0)+ f−+ijkl (ω0)+ 4f zzijkl (ω0)

f2 = 1

〈Ŝ+Ŝ−〉
∑

i,j=i±1

∑
k,l=k±1

f−zijkl (2ω0)

ĤAZ

f0 = 1

〈Ŝ+Ŝ−〉 (f
+
11(0)+ f+22(0)− f+12(0)− f+21(0))

f1 = 1

〈Ŝ+Ŝ−〉 (f
z
11(ω0)+ f z22(ω0)− f z12(ω0)− f z21(ω0))

A2. The anisotropic Zeeman interaction

In CuGeO3 there are two kinds of Cu2+ ion, which are distinguished by their different
orientations of theg-tensor, and the Zeeman Hamiltonian is given by

ĤZ = µBB0

∑
µ=x,y,z

g(1)zµ

∑
i∈1

ŝ
µ

i + µBB0

∑
µ=x,y,z

g(2)zµ

∑
i∈2

ŝ
µ

i . (A9)
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The sums
∑

i∈1 and
∑

i∈2 run over all spins of kind 1 and kind 2, respectively. The magnetic
field is applied along thez-direction. Equation (A9) can be rearranged in the following way:

ĤZ = µBB0

∑
µ=x,y,z

1

2
(g(1)zµ + g(2)zµ )

∑
i∈1,2

ŝ
µ

i + µBB0

∑
µ=x,y,z

1

2
(g(1)zµ − g(2)zµ )

(∑
i∈1

ŝ
µ

i −
∑
j∈2

ŝ
µ

j

)
.

(A10)

The first term on the right-hand side gives the usual Zeeman operator, which defines the
position of the resonance line. The second term contains the difference between theg-tensors
of site one and site two,1gzµ = 1

2(g
(1)
zµ − g(2)zµ ), and determines the Zeeman contribution to

the anisotropy of the ESR linewidth. The operatorsĝM of the anisotropic Zeeman interaction

ĤAZ = µBB0

∑
i∈1

∑
j∈2

gzz(ŝ
z
i − ŝzj )+

1

2
µBB0

∑
i∈1

∑
j∈2

(gzx − igzy)(ŝ
+
i − ŝ+j )+ CC (A11)

are given in table A1. And the linewidth becomes, according to equation (A5),

1B1/2 = 1

γe
(µBB0)

2 Re(1g2
zzf0+ |1gzx + i1gzy|2f1). (A12)

The spectral densitiesft are given in table A2.
It is useful for the interpretation of the experiment to carry out a simplified calculation

of the spin-correlation functions

f αnm(t) =
〈∑
i∈n

ŝαi (t)(
∑
j∈m

ŝαj )
+
〉
.

The first approximation is to neglect all of the inter-spin correlations〈ŝαi (t)(ŝαj )+〉 = 0, i 6=
j . Therefore only the functionsf α11(t) andf α22(t) contribute. In the following the calculation
of the correlation function

f z11(t) =
〈∑
i∈1

ŝzi (t)

(∑
j∈1

ŝzj

)+〉
is explicitly considered. The exchange Hamiltonian can be divided into parts, which act
only on spins of kind 1:Ĥ (11)

ex , on spins of kind 2:Ĥ (22)
ex , or between the spins of kind 1

and kind 2:Ĥ (12)
ex . The motion of

∑
i∈1 ŝ

z
i (t) is only caused by

Ĥ (12)
ex = 2

∑
i∈1

∑
j∈2

J
(12)
ij ŝi · ŝj

since [
Ĥ (11)
ex ,

∑
m∈1

ŝzm

]
= 0

[
Ĥ (22)
ex ,

∑
m∈1

ŝzm

]
= 0[

Ĥ (12)
ex ,

∑
m∈1

ŝzm

]
=
∑
m∈1

∑
j∈2

J
(12)
mj (ŝ

+
j ŝ
−
m − ŝ+mŝ−j ).

(A13)

Then for short times the following expansion holds:

f z11(t) =
〈∑
i∈1

ŝzi (t)
∑
j∈1

ŝzj

〉
≈
〈∑
i∈1

ŝzi

∑
j∈1

ŝzj

〉
− 1

2

t2

h̄2

〈[
Ĥ (12)
ex ,

∑
i∈1

ŝzi

][∑
i∈1

ŝzj , Ĥ
(12)
ex

]〉
(A14)
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and, with equation (A13),

f z11(t) ≈
∑
i∈1

〈
ŝzi ŝ

z
i

〉− t2

h̄2

∑
i∈1

∑
j∈2

(J
(12)
ij )

2〈ŝ+i ŝ−i 〉〈ŝ+j ŝ−j 〉. (A15)

With 〈ŝzi ŝzi 〉 = 1
3s(s + 1) = 1

4 and〈ŝ+i ŝ−i 〉 = 2
3s(s + 1) = 1

2, one gets

f z11(t) ≈ (N/2)
1

4

(
1− t2

h̄2

∑
j∈2

(J
(12)
i∈1j )

2

)
which may be extended to a Gaussian function:

f z11(t) ≈ (N/2)
1

4
exp

(
− t

2

h̄2

∑
j∈2

(J
(12)
i∈1j )

2

)
(A16)

For CuGeO3, each spin of kind 1 has two neighbours of kind 2 coupled viaJb:

f z11(t) ≈ (N/2)
1

4
exp

(
− t

2

h̄2 2(Jb)
2

)
. (A17)

With 〈Ŝ+Ŝ−〉 = 2
3Ns(s + 1) = 1

2N , the spectral densitiesf0 andf1 are

f0 ≈ 1

|Jb/h̄|
√
π

8
f1 ≈ 1

2

1

|Jb/h̄|
√
π

8
exp

(
−1

8
(h̄ω0/Jb)

2

)
(A18)

so equation (A12) becomes

1B1/2 = 1

γe

(µBB0)
2

h̄|Jb|
√
π

8
Re

(
|1gzz|2+ |1gzx + i1gzy|2 1

2
exp

[
−1

8
(h̄ω0/Jb)

2

])
(A19)

which is used to analyse the contribution of the anisotropic Zeeman interaction to the ESR
linewidth.
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